That is only true if C
(in your short example) is positive, therefore you must instruct Mathematica to make such assumptions:
FullSimplify[expr, Λ> 0]
1
You could also do this with $Assumptions
:
$Assumptions = {Λ> 0};FullSimplify[expr]
1
Blackbird suggests:
PowerExpand[expr] // FullSimplify
1
Where:
expr = (9 + 9 E^((4 t Sqrt[Λ])/Sqrt[3]) - 12 y^2 Λ - 12 z^2 Λ+ 6 y^2 Sqrt[1/Λ] Λ^(3/2) + 6 z^2 Sqrt[1/Λ] Λ^(3/2) + x^4 Λ^2 + y^4 Λ^2 + 2 y^2 z^2 Λ^2 + z^4 Λ^2 + 2 x^2 Λ (-6 + 3 Sqrt[1/Λ] Sqrt[Λ] + (y^2 + z^2) Λ) + 6 E^((2 t Sqrt[Λ])/Sqrt[3]) (3 - 2 z^2 Λ+ x^2 (-2 + Sqrt[1/Λ] Sqrt[Λ]) Λ+ y^2 (-2 + Sqrt[1/Λ] Sqrt[Λ]) Λ+ z^2 Sqrt[1/Λ] Λ^(3/2)))/(9 + 9 E^((4 t Sqrt[Λ])/Sqrt[3]) - 12 y^2 Λ - 12 z^2 Λ+ 6 y^2 Sqrt[1/Λ] Λ^(3/2) + 6 z^2 Sqrt[1/Λ] Λ^(3/2) + x^4 Λ^2 + y^4 Λ^2 + 2 y^2 z^2 Λ^2 + z^4 Λ^2 + 2 x^2 Λ (-6 + 3 Sqrt[1/Λ] Sqrt[Λ] + (y^2 + z^2) Λ) - 6 E^((2 t Sqrt[Λ])/Sqrt[3]) (-3 + x^2 Sqrt[1/Λ] Λ^(3/2) + y^2 Sqrt[1/Λ] Λ^(3/2) + z^2 Sqrt[1/Λ] Λ^(3/2)));