In my expression, there appear terms of the form A^(B Sqrt[1/C] Sqrt[C])
. Mathematica doesn't realize that this is just simply A^B
. I tried telling it explicitly by some replacement rule. This works for simple cases, but somehow if the form above is embedded in a larger expression it does not do this replacement rule.
For example,
(9 + 9 E^((4 t Sqrt[Λ])/Sqrt[3]) - 12 y^2 Λ - 12 z^2 Λ+ 6 y^2 Sqrt[1/Λ] Λ^(3/2) + 6 z^2 Sqrt[1/Λ] Λ^(3/2) + x^4 Λ^2 + y^4 Λ^2 + 2 y^2 z^2 Λ^2 + z^4 Λ^2 + 2 x^2 Λ (-6 + 3 Sqrt[1/Λ] Sqrt[Λ] + (y^2 + z^2) Λ) + 6 E^((2 t Sqrt[Λ])/Sqrt[ 3]) (3 - 2 z^2 Λ+ x^2 (-2 + Sqrt[1/Λ] Sqrt[Λ]) Λ+ y^2 (-2 + Sqrt[1/Λ] Sqrt[Λ]) Λ+ z^2 Sqrt[1/Λ] Λ^(3/2)))/(9 + 9 E^((4 t Sqrt[Λ])/Sqrt[3]) - 12 y^2 Λ - 12 z^2 Λ+ 6 y^2 Sqrt[1/Λ] Λ^(3/2) + 6 z^2 Sqrt[1/Λ] Λ^(3/2) + x^4 Λ^2 + y^4 Λ^2 + 2 y^2 z^2 Λ^2 + z^4 Λ^2 + 2 x^2 Λ (-6 + 3 Sqrt[1/Λ] Sqrt[Λ] + (y^2 + z^2) Λ) - 6 E^((2 t Sqrt[Λ])/Sqrt[ 3]) (-3 + x^2 Sqrt[1/Λ] Λ^(3/2) + y^2 Sqrt[1/Λ] Λ^(3/2) + z^2 Sqrt[1/Λ] Λ^(3/2)))/. A_^(B_. Sqrt[1/Λ] Sqrt[Λ]) :> A^B
Could anyone help me?